NEW 1,3-DIPOLAR CYCLOADDITION LEADING TO 2,5-DIHYDROPYRROLE AND PYRROLIDINE DERIVATIVES

Kazuo ACHIWA and Minoru SEKIYA
Shizuoka College of Pharmacy, 2-2-1 Oshika, Shizuoka 422

A novel 1,3-cycloaddition of intermediaries derived from N-(benzyl-idene)trimethylsilylmethylamine and acyl chlorides to conjugated olefins and acetylenes gave pyrrolidine and 2,5-dihydropyrrole derivatives, respectively.

Schiff bases and hexahydro-1,3,5-triazines have been known to give N-(1-chloro-alky1) amide by the reaction with acyl halides. Among them N-chloromethylamides have been recently reported to function as efficient nucleophiles in the N-alkylamidomethylation at the electron-rich carbons. 1)

We have found that a Schiff base of trimethylsilylamine, i.e. N-(benzylidene)-trimethylsilylmethylamine (1)²⁾ reacts with acyl halides in the presence of conjugated alkenes or alkynes to give pyrrolidines (5e,f) or 2,5-dihydropyrroles (5a-d) (See Scheme I).

In a typical experiment, a solution of N-(benzylidene) trimethylsilylmethylamine (1) (5 mmol) in 20 ml of tetrahydrofuran (THF) was added dropwise to a stirred solution of acetyl chloride (5 mmol) and dimethyl acetylenedicarboxylate (5.5 mmol) in 40 ml of THF at 40-45°C over a period of 1 hr. Heating and stirring were continued for 2 hr. After removal of the solvent 5c was obtained in 79% yield by recrystallization of the residure from methanol-isopropyl ether. 5c: mp 145-146°C, IR MBr (cm⁻¹): 1726 (-COOCH₃), 1664 (>C=C=), 1652 (>N-COCH₃); NMR &ppm (CDCl₃); 1.78 (s), 2.04 (s) (>N-COCH₃, 3H), 3.59 (s) (-COOCH₃, 3H), 3.78 (s) (-COOCH₃, 3H), 4.70 (d, J=4 Hz), 4.73 (d, J=4 Hz) (HX), 2H), 5.74 (t, J=4 Hz), 5.99 (t, J=4 Hz) (NX) (HX), 2H), 7.22 (s, aromatic, 5H); Mass M⁺: 303. The long range coupling constant values reported for this type of compounds (H-C-C=C-C-H) are J= 0.5-5 Hz.³)

Scheme I.

(CH₃)
$$_3$$
SiCH₂N=CH-Ph

(CH₃) $_3$ SiCH₂N=CH-Ph

(CH₃) $_3$ SiCH₂N=CH-Ph

(CH₃) $_3$ SiCH₂N=COOCH₃

(CH₃) $_3$ SiCH₂N=COOCH₃

(CH₃) $_3$ SiCH₂N=COOCH₃

(CH₃) $_3$ SiCH₂N=COOCH₃

(CH₃) $_3$ SiCH

(CH₃)

When 4 was absent, 1 played a role of dipolarophile to give 6, as demonstrated by the following experiment. A solution of benzoyl chloride (5 mmol) was added slowly to a solution of N-(benzylidene)trimethylsilylmethylamine (1) (10 mmol) in 40 ml of THF at 40-45°C to give 64) as a mixture of its geometric isomers in 63% yield.

A recent paper^{5d)} has reported a 1,3-dipolar addition of ylides derived by desilylation of trimethylsilylmethyliminium triflate by cesium fluoride. The present reaction may involve a likely intermediate (7) derived from 3 by desilylation, surprisingly in the absence of cesium fluoride, which is virtually unknown in the literature.

$$\begin{array}{c}
\text{C1-CH-Ph} \\
\text{(CH}_3)_3 \text{sicH}_2 \stackrel{\text{N}}{\longrightarrow} \\
\text{COPh} & -(\text{CH}_3)_3 \text{sic1}
\end{array}$$

$$\begin{array}{c}
\bigoplus_{\text{H}_2\text{C}} \bigoplus_{\text{CH-Ph}} \bigoplus_{\text{COR}} \\
\text{COR}
\end{array}$$

$$\begin{array}{c}
\bigoplus_{\text{H}_2\text{C}} \bigoplus_{\text{CH-Ph}} \\
\text{COR}
\end{array}$$

$$\begin{array}{c}
\bigoplus_{\text{COR}} \bigoplus_{\text{COR}} \\
\text{COR}
\end{array}$$

$$\begin{array}{c}
(7)
\end{array}$$

Results of extensive experiments are summarized in Table I.

Table I. Synthesis^{a)} of 2,5-Dihydropyrrole and Pyrrolidine Derivatives

R COC1	Y-C≡C-COOCH ₃ or Y-CH=CH-COOCH ₃	Product ^{b)} (yield %)
PhCOCl	сн300с-с≕с-соосн3	CH ₃ OOC COOCH ₃ Ph (85) (5a) COPh
PhCH ₂ OCOC1	сн300с-с⇔с-соосн3	CH ₃ OOC COOCH ₃ Ph (78) (5b) COOCH ₂ Ph
СН ₃ COC1	Сн300С-С≡С-С00Сн3	CH ₃ OOC COOCH ₃ Ph (79) (5c) COCH ₃
PhCOCl	н-с≕с-соосн3	Ph (26) (5d)C)
PhCOCl	Сн ₃ оос-сн=сн-соосн ₃	CH ₃ OOC COOCH ₃ (78) (5e) d)
PhCOCl	H ₂ C=CH-COOCH ₃	COOCH ₃ Ph (65) (5f) d) COPh

a) All reactions were carried out with Schiff base (5 mmol), acyl chloride (5 mmol), and 1,3-dipolarophile (5.5 mmol) in THF (60 ml) at 40-45°C for 2 hr.

b) All the products gave satisfactory elemental analyses and spectral data (ir and nmr) consistent with their structures.

c) As a by-product, 6 was obtained in 30% yield.

d) The products, 5e and 5f, were obtained in a state of stereochemical purity, investigation of which is under way.

It is noted that this new 1,3-dipolar cycloaddition gave 2,5-dihydropyrrole and pyrrolidine derivatives in good yields by simple procedure and, in contrast to the previously reported cycloaddition⁵⁾ giving N-alkylpyrrolidines, easy removal of the N-acyl-substituent of the products may increase its usefulness for synthesis of N-unsubstituted pyrrolidine derivatives.⁶⁾

Further active investigations along this line are under way.

REFERENCES

- 1) a) K. Ikeda, T Morimoto, and M. Sekiya, Chem. Pharm. Bull., 28, 1178 (1980).
 - b) K. Ikeda, Y. Terao, and M. Sekiya, Chem. Pharm. Bull., 29, 1156 (1981).
- 2) E. Popowski, M. Böttcher, and H. Kelling, Z. Chem., 15, 353 (1975).
- N. F. Chamberlain, "The Practice of NMR Spectroscopy," Plenum Press, New York, 1974, p 305.
- 4) 6: Colorless liquid, IR_{max}^{KBr} (cm⁻¹): 1640 (>N-COPh).

Hydrogen carbonate, mp 188-189°C (decomp)

Anal. Calcd for $C_{26}^{H}_{30}^{N}_{2}^{OSi \cdot CO_{3}^{H}_{2}}$: C, 68.04; H, 6.77; N, 5.88. Found: C, 68.05; H, 6.86; N, 5.82.

- 5) a) R. M. Kollog, Tetrahedron, 32, 2165 (1976).
 - b) R. Huisgen, J. Org. Chem., 41, 403 (1976).
 - c) H. Hermann, R. Huisgen, and H, Mader, J. Am. Chem. Soc., 93, 1779 (1971).
 - d) E. Vedejs and G. R. Martinez, J. Am. Chem. Soc., 101, 6452 (1979), and references cited therein.
- 6) a) J. J. Tufariello and G. E. Lee, J. Am. Chem. Soc., 102, 373 (1980).
 - b) G. E. Keck and D. G. Nickell, J. Am. Chem. Soc., 102, 3632 (1980), and references cited therein.

(Received May 18, 1981)